

Koberta Settambolo, Oluditta Ouazzeni and Kanaeno Lazzaroni	Tetranearon. They innietry TT (2000) TTT
$[\alpha]_{D}^{20} =$ Source hydro HOH ₂ C C ₉ H ₁₁ NO (5S)-(+)-5-Hydroxymethyl-5,6-dihydroindolizine	=+69.6 (c 1, CH ₂ Cl ₂) e of chirality: L-glutamic acid diethyl ester chloride, starting substrate ute configuration: (5 <i>S</i>)

Alessandro Caselli, Giovanni B. Giovenzana, Giovanni Palmisano,* Massimo Sisti* and Tullio Pilati $\begin{bmatrix} \alpha \end{bmatrix}_{D}^{20} -107.7 \ (c \ 0.65, EtOH) \\ Source \ of \ chirality: \ (1R)-camphor \\ C_{22}H_{40}N_2 \\ N,N'-Bis[(1R,2R,4R)-1,7,7-trimethylbicyclo[2.2.1]hept-2-yl]-1,2-ethanediamine \\ \end{bmatrix}$

Tetrahedron: Asymmetry 14 (2003) 1455

Ee=97% $[\alpha]_{D}^{24} = -242$ (c 0.5, CH₂Cl₂) Source of chirality: α -methyl benzylamine Absolute configuration: 1pR, 1'R

 $C_{39}H_{36}CrO_4P_2$

 $(CO)_3C$

(-)-(1pR,1'R)-Tricarbonyl[1-diphenylphosphine-2-(1'-diphenylphosphine-1'-methoxymethyl)-5-tert-butylbenzene]chromium(0)

Susan E. Gibson,* Hasim Ibrahim, Corinne Pasquier and Vishwanath M. Swamy

Tetrahedron: Asymmetry 14 (2003) 1455

 $(CO)_{3}Cr P^{Ph_{2}}$

Ee = 97% $[\alpha]_{D}^{24} = -48.2 \ (c \ 0.5, \ CH_2Cl_2)$ Source of chirality: α -methyl benzylamine Absolute configuration: 1pR, 1'R

 $C_{33}H_{40}CrO_4P_2 \\ (-)-(1pR,1'R)-Tricarbonyl[1-diisopropylphosphine-2-(1'-diphenylphosphine-1'-methoxymethyl)-5-tert-butylbenzene]chromium(0)$

Susan E. Gibson,* Hasim Ibrahim, Corinne Pasquier and
 Tetrahedron: Asymmetry 14 (2003) 1455

 Vishwanath M. Swamy

$$Ee = 97\%$$
 $[\alpha]_D^{2p} = -111.2 (c \ 0.5, CH_2Cl_2)$
 Source of chirality: α -methyl benzylamine

 $C_{39}H_{48}CrO_4P_2$
 Absolute configuration: $1pR, 1'R$

 (-)-(1pR, 1'R)-Tricarbonyl[1-dicyclohexylphosphine -2-(1'-diphenylphosphine-1'-methoxymethyl)-5-tert-butylbenzene]chromium(0)

Susan E. Gibson,* Hasim Ibrahim, Corinne Pasquier and
Vishwanath M. SwamyTetrahedron: Asymmetry 14 (2003) 1455
$$Ee = 96\%$$

 $[\alpha]_D^{24} = -104.6 (c 0.5, CH_2Cl_2)$
Source of chirality: α -methyl benzylamine
Absolute configuration: $1pR, 1'R$ $C_{33}H_{40}CrO_4P_2$
 $(-)-(1pR, 1'R)-Tricarbonyl[1-diphenylphosphine-2-(1'-diisopropylphosphine-1'-methoxymethyl)-5-tert-butylbenzene]chromium(0)$

Tetrahedron: Asymmetry 14 (2003) 1455

Ee=97% $[\alpha]_{D}^{24} = -82.9$ (c 0.5, CH₂Cl₂) Source of chirality: α -methyl benzylamine Absolute configuration: 1pR,1'R

 $C_{39}H_{48}CrO_4P_2$

 $(CO)_3C$

(-)-(1pR,1'R)-Tricarbonyl[1-diphenylphosphine-2-(1'-dicyclohexylphosphine-1'-methoxymethyl)-5-tert-butylbenzene]chromium(0)

Susan E. Gibson,* Hasim Ibrahim, Corinne Pasquier and Vishwanath M. Swamy

Tetrahedron: Asymmetry 14 (2003) 1455

Ee = 84%[α]_D²⁴ = -162 (*c* 0.5, CH₂Cl₂) Source of chirality: α -methyl benzylamine Absolute configuration: 1pR, l'R

 $C_{40}H_{38}CrO_4P_2$

 $(CO)_3$

(-)-(1pR,1'R)-Tricarbonyl [1-diphenyl phosphine-2-(1'-diphenyl phosphine-1'-ethoxymethyl)-5-tert-butyl benzene] chromium (0)-(1pR,1'R)-Tricarbonyl [1-diphenyl phosphine-2-(1'-diphenyl phosphine-1'-ethoxymethyl)-5-tert-butyl benzene] chromium (0)-(1-R)-Tricarbonyl [1-diphenyl phosphine-2-(1'-diphenyl phosphine-1'-ethoxymethyl)-5-tert-butyl benzene] chromium (0)-(1-R)-Tricarbonyl phosphine-2-(1'-diphenyl phosphine-1'-ethoxymethyl)-5-tert-butyl benzene] chromium (0)-(1-R)-Tricarbonyl phosphine-2-(1'-diphenyl phosphine-1'-ethoxymethyl)-5-tert-butyl benzene] chromium (0)-(1-R)-Tricarbonyl phosphine-2-(1'-ethoxymethyl)-5-tert-butyl benzene] chromium (0)-(1-R)-Tricarbonyl phosphine-2-(1'-ethoxymethyl)-5-tert-butyl benzene] chromium (0)-(1-R)-Tricarbonyl phosphine-2-(1'-ethoxymethyl)-5-tert-butyl benzene] chromium (0)-(1-R)-Tricarbonyl phosphine-2-(1'-ethoxymethyl)-5-tert-butyl phosphine-2-(1'-ethoxymethyl phosphine-2-(1'-ethoxymethyl phosphine-2-(1'-ethoxymethyl phosphine-2-(1'-ethoxymethyl phosphine-2-(1'-ethoxymethyl phosphin

Susan E. Gibson,* Hasim Ibrahim, Corinne Pasquier and
Vishwanath M. Swamy

$$Ee = 95\%$$

$$[\alpha]_D^{24} = -171 (c \ 0.5, CH_2Cl_2)$$
Source of chirality: α -methyl benzylamine
Absolute configuration: $1pR, 1'R$
(-)-($1pR, 1'R$)-Tricarbonyl[1-di(3,5-dimethylphenyl)phosphine-2-(1'-diphenylphosphine-1'-methoxymethyl)-5-*tert*-butylbenzene]chromium(0)

Tetrahedron: Asymmetry 14 (2003) 1455 Susan E. Gibson,* Hasim Ibrahim, Corinne Pasquier and Vishwanath M. Swamy Ee=95% $[\alpha]_{D}^{24} = -132$ (c 0.5, CH₂Cl₂) $\begin{array}{c} PAr_2 \\ OMe \\ Ar = - \end{array}$ Source of chirality: α-methyl benzylamine Absolute configuration: 1pR,1'R ΡPh₂ (CO)₃Cr $C_{43}H_{44}CrO_4P_2$ (-)-(1pR, l'R)-Tricarbonyl[1-diphenylphosphine-2-(1'-di-3,5-dimethylphenylphosphine-1'-methoxymethyl)-5-tert-butylbenzene]chromium(0)

Tetrahedron: Asymmetry 14 (2003) 1455

Ee=97% $[\alpha]_D^{24}$ =-27.6 (*c* 0.5, CH₂Cl₂) Source of chirality: α-methyl benzylamine Absolute configuration: 1*pR*,1'*R*

OMe Ar = -}{(

C47H52CrO4P2

(CO)₂C

(-)-(1pR,1'R)-Tricarbonyl [1-di(3,5-dimethylphenyl) phosphine-2-(1'-di(3,5-dimethylphenyl) phosphine-1'-methoxymethyl)-5-tert-butyl benzene] chromium (0)

Tetrahedron: Asymmetry 14 (2003) 1455 Susan E. Gibson,* Hasim Ibrahim, Corinne Pasquier and Vishwanath M. Swamy Ee = 97% $[\alpha]_{D}^{24} = +66.1 \ (c \ 0.75. \ CH_{2}Cl_{2})$ PPh₂ Source of chirality: α-methyl benzylamine Absolute configuration: R OMe $(CO)_{3}C$ C27H27CrO4P (+)-(R)-Tricarbonyl[1-(1-diphenylphosphine-1-methoxymethyl)-4-tert-butylbenzene]chromium(0) Tetrahedron: Asymmetry 14 (2003) 1455 Susan E. Gibson,* Hasim Ibrahim, Corinne Pasquier and Vishwanath M. Swamy Ee = 97% $[\alpha]_{D}^{24} = +109.4 \ (c \ 0.5, \ CH_{2}Cl_{2})$ Source of chirality: *α*-methyl benzylamine Absolute configuration: R ÓMe

 $C_{21}H_{31}CrO_4P \\ (+)-(R)-Tricarbonyl[1-(1-di-iso-propylphosphine-1-methoxymethyl)-4-tert-butylbenzene]chromium(0)$

Tetrahedron: Asymmetry 14 (2003) 1455 Susan E. Gibson,* Hasim Ibrahim, Corinne Pasquier and Vishwanath M. Swamy Ee = 96% $[\alpha]_{D}^{24} = +83.4 \ (c \ 0.5, \ CH_{2}Cl_{2})$ Source of chirality: *α*-methyl benzylamine ` OMe Absolute configuration: R (CO)₃C $C_{27}H_{39}CrO_4P$ (+)-(R)-Tricarbonyl[1-(1-dicyclohexylphosphine-1-methoxymethyl)-4-tert-butylbenzene]chromium(0)

Ph₂

ÒFt

 $(CO)_{3}$

Ee = 97% $[\alpha]_D^{24}$ = +133.4 (*c* 0.25, CH₂Cl₂) Source of chirality: α -methyl benzylamine Absolute configuration: *R*

 $\label{eq:C28} C_{28}H_{29}CrO_4P \\ (+)-(R)-Tricarbonyl[1-(1-diphenylphosphine-1-ethoxymethyl)-4-tert-butylbenzene]chromium(0)$

Tetrahedron: Asymmetry 14 (2003) 1455 Susan E. Gibson,* Hasim Ibrahim, Corinne Pasquier and Vishwanath M. Swamy Ee = 97% $[\alpha]_{D}^{24} = +36.4 \ (c \ 0.5, \ CH_{2}Cl_{2})$ Source of chirality: α-methyl benzylamine **(** OMe Absolute configuration: R Ar = -}{⟨($(CO)_3C$ C39H36CrO4P2 (+)-(R)-Tricarbonyl[1-(di-(3,5-dimethylphenyl)phosphine-1-methoxymethyl)-4-tert-butyl-benzene]chromium(0)

Marek P. Krzemiński and Marek Zaidlewicz* Ee = 94%[α]²⁰_D = -29.2 (c 1.16, CHCl₃) Source of chirality: asymmetric synthesis Absolute configuration: S HN^O Ph Ph C₁₅H₁₇NO 1-Phenylethylhydroxylamine O-benzyl ether

(*R*)-*N*-(3,5-Dinitro-2-hydroxybenzylidene)-1-[(*S*)-2-(diphenylphosphino)ferrocenyl]ethylamine

A275

Mauricio Osorio-Olivares, Marcos Caroli Rezende,* Silvia Sepúlveda-Boza, Bruce K. Cassels, Ricardo F. Baggio and Juan C. Muñoz-Acevedo

HCOCF₁ Mes $C_{12}H_{12}F_{3}NO_{2}S$

Tetrahedron: Asymmetry 14 (2003) 1473

 $[\alpha]_{D}^{24}$ –28.5 (*c* 1.03 g/100 mL, MeOH) Source of chirality: natural L-alanine

(S)-2-Trifluoroacetamido-1-(4-methylthiophenyl)-1-propanone

Mauricio Osorio-Olivares, Marcos Caroli Rezende,* Silvia Sepúlveda-Boza, Bruce K. Cassels, Ricardo F. Baggio and Juan C. Muñoz-Acevedo

NH₂.HCl

(S)-2-Amino-1-(4-methoxyphenyl)-1-propanone hydrochloride

Tetrahedron: Asymmetry 14 (2003) 1473

 $[\alpha]_{D}^{23}$ -32.1 (*c* 1.01 g/100 mL, MeOH) Source of chirality: natural L-alanine

Mauricio Osorio-Olivares, Marcos Caroli Rezende,* Silvia Sepúlveda-Boza, Bruce K. Cassels, Ricardo F. Baggio and Juan C. Muñoz-Acevedo

MeS NH₂.HCl

C10H14CINO2

MeO

Tetrahedron: Asymmetry 14 (2003) 1473

 $[\alpha]_{D}^{22}$ -30.4 (*c* 0.98 g/100 mL, MeOH) Source of chirality: natural L-alanine Mauricio Osorio-Olivares, Marcos Caroli Rezende,* Silvia Sepúlveda-Boza, Bruce K. Cassels, Ricardo F. Baggio and Juan C. Muñoz-Acevedo

Tetrahedron: Asymmetry 14 (2003) 1473

 $[\alpha]_{D}^{24}$ –22.9 (*c* 1.03 g/100 mL, MeOH) Source of chirality: natural L-alanine

(S)-2-Amino-1-(4-ethylthiophenyl)-1-propanone hydrochloride

C₁₉H₂₁NO₅

(Z)-Methyl (1S,2S,4R)-N-benzoyl-2-(2-carbomethoxyvinyl)-7-azabicyclo[2.2.1]heptane-1-carboxylate

Tetrahedron: Asymmetry 14 (2003) 1479 Ana M. Gil, Elena Buñuel, María D. Díaz-de-Villegas and Carlos Cativiela* E.e. >98% $[\alpha]_{D}^{25} = -61.9 \ (c \ 1.0, \ CHCl_{3})$ Source of chirality: asymmetric synthesis Absolute configuration: (1S, 2R, 4R)MeOOC C18H19NO5S Methyl (1S,2R,4R)-N-benzoyl-2-[(S)-2-thionocarbonyl-1,3-dioxolan-4-yl]-7-azabicyclo[2.2.1]heptane-1-carboxylate

 Ana M. Gil, Elena Buñuel, María D. Díaz-de-Villegas and Carlos Cativiela*
 Tetrahedron: Asymmetry 14 (2003) 1479

 Ph H MeOOC C₁₈H₂₀N₂O₃
 E.e. >98% [x]²⁵=-66.8 (c 0.5, CHCl₃) Source of chirality: asymmetric synthesis Absolute configuration: (1*S*,2*R*,4*R*)

 Methyl (*IS*,2*R*,4*R*)-*N*-benzoyl-2-(2-cyanolethyl)-7-azabicyclo[2.2.1]heptane-1-carboxylate
 Tetrahedron: Asymmetry 14 (2003) 1479

 Ana M. Gil, Elena Buñuel, María D. Díaz-de-Villegas and Carlos Cativiela*
 Tetrahedron: Asymmetry 14 (2003) 1479

COOMe MeOOC

C19H23NO5

E.e. >98% $[\alpha]_{D}^{25} = -76.3 \ (c \ 1.0, \ CHCl_3)$ Source of chirality: asymmetric synthesis Absolute configuration: (1S,2R,4R)

 $Methyl \ (1S, 2R, 4R) - N - benzoyl - 2 - (2 - carbomethoxyethyl) - 7 - azabicyclo [2.2.1] heptane - 1 - carboxylate -$

A282

Ayhan S. Demir,* Asuman Aybey, Özge Sesenoglu and Fatos Polat Tetrahedron: Asymmetry 14 (2003) 1489 Ee: 97% $[\alpha]_{\rm D}^{20} = -57$ (c 2 CHCl₃) Source of chirality: enzymatic kinetic resolution C₀H₈O₃ (-)-3-Hydroxy-2,3-dihydro-4H-chromen-4-one Tetrahedron: Asymmetry 14 (2003) 1495 Csaba Paizs, Monica Toşa, Cornelia Majdik, Paula Moldovan, Lajos Novák, Pál Kolonits, Adriana Marcovici, Florin-Dan Irimie*

> Ee=55% [by GC on HP Chiral column or by HPLC on (S,S)- or (R,R)-Whelk-01 column, after derivatisation with acetylchloride] $[\alpha]_{D}^{20} = -9.1$ (c 1.00, CHCl₃) Source of chirality: baker's yeast reduction Absolute configuration: S

Tetrahedron: Asymmetry 14 (2003) 1495 Csaba Paizs, Monica Toşa, Cornelia Majdik, Paula Moldovan, Lajos Novák, Pál Kolonits, Adriana Marcovici, Florin-Dan Irimie* and László Poppe* Ee = 65% [by GC on HP Chiral column or by HPLC on (S,S)- or (R,R)-Whelk-01 column, after derivatisation with acetylchloride] OH $[\alpha]_D^{20} = -9.4$ (c 1.00, CHCl₃)

Source of chirality: baker's yeast reduction Absolute configuration: S

Csaba Paizs, Monica Toşa, Cornelia Majdik, Paula Moldovan, Lajos Novák, Pál Kolonits, Adriana Marcovici, Florin-Dan Irimie*

Tetrahedron: Asymmetry 14 (2003) 1495

Ee=88% [by GC on HP Chiral column or by HPLC on (S,S)- or (R,R)-Whelk-01 column, after derivatisation with acetylchloride] $[\alpha]_{\rm D}^{20} = -16.8 \ (c \ 1.00, \ {\rm CHCl}_3)$ Source of chirality: baker's yeast reduction Absolute configuration: S

C₁₀H₉NO₄ (S)-1-(5-Nitrobenzofuran-2-yl)ethanol

OH

ЭΗ

and László Poppe*

C10H10O2 (S)-1-(Benzofuran-2-yl)ethanol

and László Poppe*

 O_2N

C10H9BrO2 (S)-1-(5-Bromobenzofuran-2-yl)ethanol Csaba Paizs, Monica Toşa, Cornelia Majdik, Paula Moldovan, Lajos Novák, Pál Kolonits, Adriana Marcovici, Florin-Dan Irimie* and László Poppe*

OH OMe

C10H10O3

(S)-1-(Benzofuran-2-yl)ethane-1,2-diol

C₁₁H₁₂O₃ (S)-1-(7-Methoxybenzofuran-2-yl)ethanol

Tetrahedron: Asymmetry 14 (2003) 1495

Ee=68% [by GC on HP Chiral column or by HPLC on (S,S)- or (R,R)-Whelk-01 column, after derivatisation with acetylchloride] $[\alpha]_{D}^{20} = -10.2$ (c 1.00, CHCl₃) Source of chirality: baker's yeast reduction Absolute configuration: S

Csaba Paizs, Monica Toşa, Cornelia Majdik, Paula Moldovan, Lajos Novák, Pál Kolonits, Adriana Marcovici, Florin-Dan Irimie* and László Poppe*

Tetrahedron: Asymmetry 14 (2003) 1495

Ee = 87% [by HPLC on (S,S)-Whelk-01 column] $[\alpha]_{\rm D}^{20} = -25.3 \ (c \ 1.00, \ {\rm CHCl}_3)$ Source of chirality: baker's yeast reduction of the corresponding hydroxymethyl ketone Absolute configuration: S

Tetrahedron: Asymmetry 14 (2003) 1495 Csaba Paizs, Monica Toşa, Cornelia Majdik, Paula Moldovan, Lajos Novák, Pál Kolonits, Adriana Marcovici, Florin-Dan Irimie* and László Poppe* Ee = 92% [by HPLC on (S,S)-Whelk-01 column] $[\alpha]_{D}^{20} = -22.1$ (c 1.00, CHCl₃) Br

C10H9BrO3 (S)-1-(Bromobenzofuran-2-yl)ethane-1,2-diol Source of chirality: baker's yeast reduction of the corresponding hydroxymethyl ketone Absolute configuration: S

Csaba Paizs, Monica Toşa, Cornelia Majdik, Paula Moldovan, Lajos Novák, Pál Kolonits, Adriana Marcovici, Florin-Dan Irimie* and László Poppe*

 O_2N

C10HoNO5 (S)-1-(Nitrobenzofuran-2-yl)ethane-1,2-diol

Tetrahedron: Asymmetry 14 (2003) 1495

Ee = 93% [by HPLC on (S,S)-Whelk-01 column, after conversion to (S)-1-acetoxy-1-(5-nitrobenzofuran-2-yl)ethane] $[\alpha]_{\rm D}^{20} = -19.4$ (c 1.00, CHCl₃)

Source of chirality: baker's yeast reduction of the corresponding hydroxymethyl ketone Absolute configuration: S

Csaba Paizs, Monica Toşa, Cornelia Majdik, Paula Moldovan, Lajos Novák, Pál Kolonits, Adriana Marcovici, Florin-Dan Irimie* and László Poppe*

Tetrahedron: Asymmetry 14 (2003) 1495

Ee = 84% [by HPLC on (S,S)-Whelk-01 column] $[\alpha]_{D}^{20} = 24.1$ (*c* 1.00, CHCl₃) Source of chirality: baker's yeast reduction of the corresponding acetoxymethyl ketone Absolute configuration: R

OH $C_{10}H_{10}O_3$

B

(R)-1-(Benzofuran-2-yl)ethane-1,2-diol

OH

(R)-1-(Bromobenzofuran-2-yl)ethane-1,2-diol

C10H9BrO3

Csaba Paizs, Monica Toşa, Cornelia Majdik, Paula Moldovan, Lajos Novák, Pál Kolonits, Adriana Marcovici, Florin-Dan Irimie* and László Poppe*

Tetrahedron: Asymmetry 14 (2003) 1495

Ee = 91% [by HPLC on (S,S)-Whelk-01 column] $[\alpha]_{\rm D}^{20} = 21.7 \ (c \ 1.00, \ {\rm CHCl}_3)$ Source of chirality: baker's yeast reduction of the corresponding acetoxymethyl ketone Absolute configuration: R

Tetrahedron: Asymmetry 14 (2003) 1495 Csaba Paizs, Monica Toşa, Cornelia Majdik, Paula Moldovan, Lajos Novák, Pál Kolonits, Adriana Marcovici, Florin-Dan Irimie* and László Poppe* Ee = 91% [by HPLC on (S,S)-Whelk-01 column, after conversion to (R)-1-acetoxy-1-(5-nitrobenzofuran-2-yl)ethane] 021 $[\alpha]_{\rm D}^{20} = 19.0 \ (c \ 1.00, \ {\rm CHCl}_3)$

C10H9NO5 (R)-1-(Nitrobenzofuran-2-yl)ethane-1,2-diol Source of chirality: baker's yeast reduction of the corresponding acetoxymethyl ketone Absolute configuration: R

Tetrahedron: Asymmetry 14 (2003) 1503 Paul Müller,* Fabienne Lacrampe and Gérald Bernardinelli Ee = 66% $[\alpha]_{D}^{20} = -16.1$ (*c* 1.02, CHCl₃) Source of chirality: asymmetric synthesis Absolute configuration: (1S,6S,9R) SiEt, $C_{14}H_{26}O_2Si$

(1S,6S,9R)-9-(Triethylsilyl)-7-oxabicyclo[4.3.0]nonan-2-one

Source of chirality: quinine and (R)-(-)-1-(1-naphthyl)ethyl isocyanate

A286

H,

C33H37N3O4

11-[(R)-1-(1-Naphthyl)ethylcarbamoyloxy]-10,11-dihydroquinine

HO'

MeO

(3,5-Dioxa-4-phosphacyclohepta[2,1-a;3,4-a']dinaphthalen-4-yl) (2-methoxyphenyl) (4-vinylbenzyl) amine

E.e. = 99% $[\alpha]_D^{27} = +46.6$ (c 1.0, CH₃Cl) Source of chirality: lipase-catalyzed resolution Absolute configuration: R

 $C_{10}H_{10}O_2$ (*R*)-2-Methylchroman-4-one

Tetrahedron: Asymmetry 14 (2003) 1565 Anne Paju, Tõnis Kanger, Tõnis Pehk, Rasmus Lindmaa, Aleksander-Mati Müürisepp and Margus Lopp* Ee = 95%соон $[\alpha]_{D}^{20} = -15 \ (c \ 1.66, \ CH_{2}Cl_{2})$ Source of chirality: asymmetric synthesis Absolute configuration: 2S $C_6H_8O_4$ (S)-2-Methyl-5-oxotetrahydrofuran-2-carboxylic acid

Anne Paju, Tõnis Kanger, Tõnis Pehk, Rasmus Lindmaa, Aleksander-Mati Müürisepp and Margus Lopp* Ee = 94% $[\alpha]_D^{19} = +16 (c \ 1.99, MeOH)$ Source of chirality: asymmetric synthesis Absolute configuration: 2R (R)-2-Hydroxymethyl-5-oxotetrahydrofuran-2-carboxylic acid

Ahmed Kamal,* Mahendra Sandbhor and Ahmad Ali Shaik	Tetrahedron: Asymmetry 14 (2003) 1575
E.e. $\begin{bmatrix} \alpha \end{bmatrix}_{D}^{D}$ Sou $C_{15}H_{20}O_{4}$ 5-Methylcarbonyloxy-1-phenyl-(1 <i>R</i>)-pentyl acetate	=94.0% [by chiral HPLC] =+43.2 (c 0.98, benzene) ree of chirality: enzymatic acetylation plute configuration: R

Ahmed Kamal,* Mahendra Sandbhor and Ahmad Ali Shaik	Tetrahedron: Asymmetry 14 (2003) 1575
E.c	.=97.0% [by chiral HPLC]
[\alpha]	$_{\rm D}^{25} = -17.6$
So	arce of chirality: enzymatic acetylation
At	solute configuration: S
$C_{10}H_{10}O_2$	
5-Phenyl-(5S)-tetrahydro-2-furanone	

Tetrahedron: Asymmetry 14 (2003) 1581 Mohd. Sharfuddin, Atsushi Narumi, Yuko Iwai, Keiko Miyazawa, Shinji Yamada, Toyoji Kakuchi and Harumi Kaga* E.e. = 63% $[\alpha]_{D}^{25} = -180 \ (c \ 1.0, \ CHCl_{3})$ OAc Source of chirality: dynamic kinetic resolution Absolute configuration: R (determined by CD measurement) C12H11NO4 (1R)-2-Acetyl-3-oxo-2,3-dihydro-1H-isoindol-1-yl acetate

Mohd. Sharfuddin, Atsushi Narumi, Yuko Iwai, Keiko Miyazawa, Shinji Yamada, Toyoji Kakuchi and Harumi Kaga* E.e. >99% $[\alpha]_{D}^{25} = -191$ (c 1.0, CHCl₃) Source of chirality: dynamic kinetic resolution Absolute configuration: R (determined by CD measurement) $C_{13}H_{13}NO_4$

(1R)-3-Oxo-2-propionyl-2,3-dihydro-1H-isoindol-1-yl acetate

Tetrahedron: Asymmetry 14 (2003) 1581

A300

Doss Jayaprakash, Yukari Kobayashi, Shizue Watanabe, Takayoshi Arai and Hiroaki Sasai*

3-(4-Vinylbenzyloxy)methyl-2,2'-bis(methoxymethyloxy)-1,1'-binaphthalene

 $C_{34}H_{32}O_5$

Tetrahedron: Asymmetry 14 (2003) 1587

 $[\alpha]_{D}^{28} = +50$ (*c* 1, CHCl₃) Source of chirality: BINOL Absolute configuration: (*R*)